用比例解决问题 教案教学设计(人教新课标六年级下册) |
||||
小学数学教学资源网 → 数学教案 → 教学设计 手机版 | ||||
教学内容:教科书P59~60例5、例6,练习九3、7题。 教学目标: 1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。 2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。 3、培养学生良好的解答应用题的习惯。 教学重点:用比例知识解答比较容易的归一、归总应用题。 教学难点:正确分析题中的比例关系,列出方程。 教学过程: 一、复习铺垫,引入新课。(课件出示) 1、判断下面每题中的两种量成什么比例? (1)速度一定,路程和时间. (2)路程一定,速度和时间. (3)单价一定,总价和数量. (4)每小时耕地的公顷数一定,耕地的总公顷数和时间. (5)全校学生做操,每行站的人数和站的行数. 2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗? (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。 (2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。 (3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。 3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗? (1)学生自己解答,然后交流解答方法。 (2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题 二、探究新知。 1、教学例5 (1)学生再次读题,理解题意。思考和讨论下面的问题: ① 问题中有哪三种量?哪一种量一定?哪两种量是变化的? ② 它们成什么比例关系?你是根据什么判断的? ③ 根据这样的比例关系,你能列出等式吗? (2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。 (3)根据正比例的意义列出方程: 12.88=χ10 解:设李奶奶家上个月的水费是χ元。 8χ= 12.8×10 χ=128÷8 χ= 16 答:李奶奶家上个月的水费是16元。 (4)将答案代入到比例式中进行检验。 2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了) 3、教学例6 (1)出示例6情境图,你能说出这幅图的意思吗?(指名回答) (2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系? (3)学生独立解答。 (4)指名板演,全班交流。 三、巩固提高。 做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。 四、课堂小结。 今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么? 五、课堂作业。 教科书P62练习九第3、7题。 自行车里的数学 教学目标 知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。 过程与方法:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。 情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。 教学重难点 引导学生理解变速自行车能变速的原理。 教学过程 一、揭示课题 1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。 2、自行车里会有数学问题吗?想一想。 二、研究普通自行车的速度与内在结构的关系 1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。 2、分析问题 (1)学生讨论如何解决问题。 方案一:直接测量,但是误差较大。 方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。 (2)讨论:前齿轮转一圈,后齿轮转几圈? 前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数 3、建立数学模型,收集数据并求解。 (1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数) (2)分组收集所需要的数据,带入上述模式,求出答案。 4、汇报结果。 各小组展示并解释本组的研究过程和结果,在比较结果。 三、研究变速自行车能组合出多少种速度? 1、提出问题:变速自行车能组合出多少种速度? (1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。) (2)根据这个结构,可以组合出多少种速度? 2、分析问题,求解,汇报。 3、蹬同样的圈数,哪种组合使自行车走得最远? 四、学以致用 一辆变速自行车有2个前齿轮,分别有46和38个齿,有4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈? 五、课堂小结 自行车里的学问可真大,你还能提出一些数学问题并解决吗? [自行车里的数学] 1、踏板蹬一圈,是不是车轮也走一圈? 2、踏板蹬一圈,所走的路程与什么有关 3检测 (1)、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米? (2)、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数) 相关链接:教学设计 人教新课标六年级教学设计
|
·语文课件下载
| |||
下载该资料的word文档 (内含完整公式图片) | ||||
『点此察看与本文相关的其它文章』『搜索相关课件』 | ||||
【上一篇】【下一篇】 【教师投稿】 |