小学数学总复习专题讲解及训练(六) 教案教学设计(人教新课标六年级总复习)

小学数学教学资源网数学教案教学设计 手机版


 

主要内容

比例的意义和基本性质

学习目标

1、使学生初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念。

2、使学生联系图形的放大和缩小理解比例的意义和作用,认识比例的“项”、“内项”和“外项”;理解并掌握比例的基本性质,会应用比例的基本性质解比例。

3、使学生在认识比例、应用比例的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意义和能力,丰富解决问题的策略,发展对数学的积极情感。

考点分析

1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。

2、表示两个比相等的式子叫做比例。

3、组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

4、在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。

典型例题

例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)

A                     B                    

C

                                          

(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。这两个长方形的长有什么关系?宽呢?

(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少?

分析与解:(1)长方形B的长是长方形A的2倍,宽也是长方形A的2倍。或者说长方形B和长方形A长的比是2:1,宽的比也是2:1。

把长方形的每条边放大到原来的2倍,放大后的长方形的长和宽与原来长方形的比是2:1,就是把长方形A的长和宽按2:1的比进行放大。

(2)把长方形A按1:2的比缩小后为长方形C,长、宽缩小为原来的 ,图C的长是0.75厘米,图C的宽是0.5厘米。

由此可见,放大或缩小前后图形形状没有改变,还是长方形,只是大小变了。

例2、(根据指定的比,将图形按要求放大或缩小)

先按3:2的比画出长方形A放大后的图形B,再按1:2的比画出长方形A缩小后的图形C。(1)图B的长、宽各是几格?(2)图C呢?(3)观察这三幅图形,你有什么发现?





A

B







C





分析与解:(1)按3:2的比将长方形A放大,即将长方形A的长与宽分别扩大1.5倍,那么图B的长为6×1.5 = 9格,宽为4×1.5 = 6格。(2)按1:2的比将长方形A缩小,即将长方形A的长与宽分别缩小到原来的 ,那么图C的长为6÷2 = 3格,宽为4÷2 = 2格。(3)从这三幅大小不同的图形上可以看出,放大或缩小后的图形与原来的图形比较,大小虽变了,但形状不变,而且各条边长度的变化都符合指定的比。

点评:按比例放大图形或缩小图形,关键是要先根据比确定是放大还是缩小,然后确定好每条边的长度,画出图形就行了。

例3、(将两个相等比写成一个等式)

图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?比较写出的两个比,你有什么发现?

B

A                                   6厘米

3厘米

         8厘米              

4厘米

分析与解:(1)图A中长与宽的比是4:3;图B中长与宽的原始比是8:6,而8:6化简后就是4:3。

(2)这两个比化简后都是4:3,比值相等,说明这两个比可以写成一个等式。即

4:3 = 8:6或  =  ,都读作:4比3 等于 8比6。

例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。

(1) 5 :6 和15 :18       (2)  0.2 :0.1 和 3 :1

(3)   :  和 1.2 :0.8  (4) 6 :2 和  : 

分析与解:分别求出每组中两个比的比值,如果相等就能组成比例,不相等就不能组成比例。

(1) 因为5 :6 =  ,15 :18 =  ,所以5 :6 = 15 :18。

(2) 因为0.2 :0.1 = 2, 3 :1 = 3,所以 0.2 :0.1 和 3 :1不能组成比例。

(3) 因为  :  =  , 1.2 :0.8 =   ,所以  :  = 1.2 :0.8。

(4) 6 :2 = 3,  :  = 3,所以6 :2 =   : 。

点评:判断两个比能不能组成比例,可以像题目中的方法一样,求出两个比的比值,比值相等就能组成比例,否则就不行。这样解题的依据是比例的意义。

例5、(比例的各部分名称和比例的基本性质)

一台织布机3小时织布3.6米,4小时织布4.8米。你能根据数量间的关系写出比例吗?

分析与解:(1)这台织布机织布米数和织布时间的比相等。      3.6 :3 = 4.8 :4

(2)这台织布机织布米数的比和织布时间的比相等。  3.6 :4.8 = 3 :4

(3)这台织布机织布时间和织布米数的比相等。      3 :3.6 = 4 :4.8

介绍“项”:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:

3.6 :3  =  4.8 :4

内项 

                       外项

观察题中的三个比例,你有什么发现?

3.6 :3 = 4.8 :4   3.6 :4.8 = 3 :4   3 :3.6 = 4 :4.8

(1)3.6和4可以同时做比例的外项,也可以同时做比例的内项。

(2)3.6 × 4 = 3 × 4.8,可见在比例中两个外项的积等于两个内项的积。

(3)如果把3.6 :3 = 4.8 :4改写成分数形式  =  ,等号两边的分子、分母分别交叉相乘,结果也相等。

(4)如果用字母表示比例的四个项,即 a : b = c : d,

那么这个规律可表示成ad = bc 或 bc = ad。

(5)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例6、(比例基本性质的应用)根据2 × 7 = 1.4 × 10这个等式写出几个比例。

分析与解:根据比例的基本性质,可以得出2和7、1.4和10这两组数要么同时是比例的外项,要么同时是比例的内项。

1.4 : 2 = 7 : 10                  1.4 : 7 = 2 : 10

10 : 2 = 7 : 1.4                  10 : 7 = 2 : 1.4

2 : 1.4 = 10 : 7                  2 : 10 = 1.4 : 7

7 : 1.4 = 10 : 2                  7 : 10 = 1.4 : 2

点评:像这样的比例一共可以写8个。但它们不变的是2和7要么同时为内项,要么同时为外项,而1.4和10这一组数也一样。写的时候可以一组一组地写了。

例7、(按比例放大的含义)

王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?

4厘米

5厘米

分析与解:按比例放大就是把原图形中的各部分线段都按相同的比放大,放大前后的相关线段的厘米数是可以组成比例的。两张图片长的比与宽的比可以组成比例,两张图片中各自长、宽的比也可以组成比例。

12.5 : 5 = 宽 : 4   或    12.5 : 宽 = 5 : 4

例8、(解比例)上图中宽是多少厘米?

分析与解:在解比例时,根据比例的基本性质把比例转化为积相等的式子,然后再根据等式的性质来解答。

解:设宽是ⅹ厘米。

12.5 : 5 = ⅹ : 4  

 5ⅹ = 12.5 × 4   ┈┈ 根据比例的基本性质

5ⅹ = 50

ⅹ = 10

答:放大后图片的宽是10厘米。

点评:像上面这样求比例中的未知项,叫做解比例。

同学们,你会解答     =    这个比例吗?试试看吧!

小学数学总复习专题讲解及训练(六)

模拟试题

1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(     )厘米,宽是(    )厘米,这张图片(    )不变,大小(    )。

2、一块正方形的花手帕,边长10厘米,将其按(    )的比放大后,边长变为30厘米。

3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。































4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15     20∶5和4∶1      5∶1和6∶2

5、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是(        )。

6、在比例里,两个(    )的积和两个(     )积相等。

7、如果A×3=B×5,那么A∶B= (      ) ∶ (         )。

8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:

           (     ) ∶ (    ) = (     ) ∶ (     )。 

9、根据3×8 = 4×6写成的比例是(          )、(          )或(           )。

10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是(   )∶(   )。

 

 

13、解比例

ⅹ∶3 = 78 ∶14          9x  = 4.50.8                 16 ∶ 25  = 12 ∶x

 34 ∶ x = 3∶12        38 ∶ x = 5%∶0.6         1.318 = x3.6 

14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是(   )。

参考答案:

1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(   4  )厘米,宽是(  3  )厘米,这张图片(  形状  )不变,大小(  变了  )。

2、一块正方形的花手帕,边长10厘米,将其按(  3 : 1  )的比放大后,边长变为30厘米。

3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。































4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15     20∶5和4∶1      5∶1和6∶2

(1) 因为6 :10 =  ,9 :15 =  ,所以6 :10 = 9 :15。

(2) 因为20 :5 = 4,4 :1 = 4,所以20 :5 = 4 :1。

(3) 因为5 :1 = 5,6 :2 = 3,所以5 :1 和 6 :2不能组成比例。

5、在2∶5、12∶0.2、31∶15 三个比中,与5.6∶14 能组成比例的一个比是(2∶5 )。

6、在比例里,两个(  外项  )的积和两个(  内项  )积相等。

7、如果A×3=B×5,那么A∶B= (   5   ) ∶ (    3     )。

8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:

           ( 6 ) ∶ ( 24 )  =  ( 5 ) ∶ ( 20 )。 6×20 = 24×5 可组成8个比例

9、根据3×8 = 4×6写成的比例是(  3 :4 = 6 :8 )、( 3 :6 = 4 :8 )或(   4 :3 = 8 :6  )。可组成8个比例

10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是(  3 )∶( 1  )。

 

解:设平行四边形的高是ⅹ厘米。

36 : 24 =  24 : ⅹ  

 36ⅹ = 24 × 24   ┈┈ 根据比例的基本性质

36ⅹ = 576

ⅹ = 16

答:平行四边形的高是16厘米。

 

解:设梯形的上底是ⅹ厘米,高是Y厘米。

18 : 27 =  10 : ⅹ        18 : 27 =  12 : Y

 18ⅹ = 27 × 10            18 Y = 27 × 12  

18ⅹ = 270                 18 Y = 324  

ⅹ = 15                     Y = 18

答:梯形的上底是15厘米,高是18厘米。

13、解比例

ⅹ∶3 = 78 ∶14          9x  = 4.50.8                 16 ∶ 25  = 12 ∶x

ⅹ =              ⅹ = 1.6                      ⅹ = 1.2

 34 ∶ x = 3∶12        38 ∶ x = 5%∶0.6         1.318 = x3.6 

 ⅹ = 3                ⅹ = 4.5               ⅹ = 0.26

14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( 3  )。

 

·语文课件下载
·语文视频下载
·语文试题下载

·语文备课中心




下载该资料的word文档
(内含完整公式图片)

点此察看与本文相关的其它文章』『搜索相关课件


上一篇】【下一篇  【教师投稿】 
本站管理员:尹瑞文 微信:13958889955