小学数学总复习专题讲解及训练(九)1 教案教学设计(人教新课标六年级第十二册)

小学数学教学资源网数学教案教学设计 手机版


 

教学内容:

    期中复习及考前模拟

复习要点:

(一)数与代数

1、百分数的应用

百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。

2、比例的有关知识

比例的知识有比例的意义、比例的基本性质和解比例。这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。

3、成正比例和成反比例的量

教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。 

xkb1.com

(二)空间与图形

1、圆柱和圆锥

圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识。

2、图形的放大或缩小

图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。这个内容安排在第三单元里,结合比例的知识进行教学。

3、确定位置等内容

确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度”“南偏西几度”的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少”的形式描述物体所在的位置。

知识点梳理

(一)数与代数

1、百分数的应用

(1)求一个数比另一个数多(少)百分之几的实际问题

①要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数 

②例题:六年级男生有180人,女生有160人,男生比女生多百分之几?女生比男生少百分只几?

男生比女生多的人数 ÷ 女生人数 = 百分之几  (180 - 160)÷ 160 = 12.5%

女生比男生少的人数 ÷ 男生人数 = 百分之几  (180 - 160)÷ 180 ≈ 11.1%

(2)纳税问题

①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,

应纳税额 = 收入 × 税率

②例题:张强编写的书在出版后得到稿费1400元,稿费收入扣除800元后按14%的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?

(1400 - 800)×14% = 84(元)

(3)利息问题

①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。税前应得利息 = 本金 × 利率 × 时间

②例题:叔叔今年存入银行10万元,定期二年,年利率4.50% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗?

100000 × 4.5%  × 2 × (1 - 5%)  = 8550(元)

8550元  >  6000元   得到的利息能买一台6000元的电脑

(4)有关折扣问题

①要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 × 折数。

②例题:一种衣服原价每件50元,现在打九折出售,每件售价多少元?

九折就是90%,50×90%=50×0.9=45(元)

例题:一种衣服现在打九折出售,现在售价是45元,每件的原价是多少元?

九折”就是90%,ⅹ×90% = 45     ⅹ=50

(5)列方程解稍复杂的百分数实际问题

①要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同;解答“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。

②例题:果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。苹果树和梨树各有多少棵?

解:设梨树有x棵,苹果树有20%x棵

  x + 20%x = 360      x = 300

20%x = 300 × 20% = 60

答:梨树有300棵,苹果树有60棵。

例题:某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?

解:设五月份用煤x吨

  x - 25%x = 60      x = 80

答:五月份用煤80吨。

2、比例的有关知识

(1)比例的意义

①要点:表示两个比相等的式子叫做比例。

②例题:应用比例的意义判断6.4 : 4和9.6 : 6能否组成比例?

因为:6.4 : 4 = 6.4 ÷ 4 = 1.6   9.6 : 6 = 9.6 ÷ 6 = 1.6

所以:6.4 : 4 = 9.6 : 6

(2)比例的基本性质

①要点:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项;在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

②例题:    3 :8  =  18  :48        3 × 48 = 8 × 18

内项 

                           外项

例题:运用比例的基本性质判断3.6 :1.8和0.5 :0.25能否组成比例?

因为  3.6 × 0.25 = 0.9      1.8 × 0.5 = 0.9

所以  3.6 :1.8 = 0.5 :0.25

例题:从12的因数中任意选出4个数,再组成8个比例式。

     因为:12 = 1 × 12 = 2 × 6 = 3 × 4 

所以从12的因数中任意选出两组4个数并运用比例的基本性质可以组成8个不同的比例。       2 × 6 = 3 × 4

(2)︰(3)= (4)︰(6)    (3)︰(2)= (6)︰(4)

(2)︰(3)= (4)︰(6)    (3)︰(2)= (6)︰(4)

(6)︰(4)= (3)︰(2)    (4)︰(6)= (2)︰(3)

(6)︰(4)= (3)︰(2)    (4)︰(6)= (2)︰(3)

(3)解比例

①要点:根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。

②例题:3 : 8 = ⅹ : 40                  =  

 8ⅹ = 3 × 40             4.5ⅹ = 9 × 0.8

8ⅹ = 120                 4.5ⅹ = 7.2

ⅹ = 15                     ⅹ = 1.6

(4)比例尺

①要点:图上距离和实际距离的比,叫做这幅图的比例尺。

比例尺 =  ,比例尺有两种形式:数值比例尺和线段比例尺。

②例题:在一幅某乡农作物布局图上,20厘米表示实际距离16千米。求这幅图的比例尺。

16千米 = 1600000厘米    

  =       

例题:说出下面比例尺表示的意思。

 

这是线段比例尺,它表示图上1厘米的距离代表实际距离200千米。

例题:在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?  

方法1、12.5×500000 = 6250000(厘米)= 62.5(千米)

方法2、2.5×5 = 62.5(千米)

方法3、12.5 ÷   = 12.5×500000 = 6250000(厘米)= 62.5千米

解:设甲、乙两城实际相距ⅹ厘米。

  =  

1ⅹ = 12.5 × 500000

ⅹ = 6250000

6250000(厘米)= 62.5千米

(5)面积变化

①要点:把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一( )后,放大(或缩小)后与放大(或缩小)前图形的面积比是n²:1(或1:n²)。

②例题:下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。

                                         

 

量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘米。大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。

  =   =   ×   = 9 : 1 = 3² : 1

大长方形与小长方形面积的比是9 : 1。

3、成正比例和成反比例的量

(1)正比例的意义和图像

①要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:  = K(一定)用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。

②例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么?

表格1

数量/本 1 3 6 8 10 20 ……

总价/元 4 12 24 32 40 80 ……

  = 4,  = 4,  = 4  ……

因为  = 单价(一定),所以单价一定时,总价和数量成正比例。

例题:在圆柱的侧面积、底面周长、高这三种量中xkb1.com

            当(    )一定时,(    )与(    )成正比例;

            当(   )一定时,(    )与(    )成正比例。

例题:某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?

造纸时间/时 1 2 3 4 ……

造纸吨数/吨 1.5 ……

根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。             吨数/吨

6             





3      



1    

0

1  2  3  4 5  6  7 时间/时

造纸吨数与造纸时间成正比例吗?为什么?

因为  = 每小时造纸吨数(一定),所以每小时造纸吨数一定时,造纸吨数与造纸时间成正比例。

根据图像判断,5小时造纸多少吨?

根据图像判断,5小时造纸7.5吨

(2)反比例的意义

①要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K(一定)。

②例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么?用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:

单价/元 1.5 2 3 4 5 6 ……

数量/本 40 30 20 15 12 10 ……

1.5 × 40 = 60 ,2 × 30 = 60 ,4 × 15 = 60  ……

因为单价 × 数量 = 总价(一定),所以总价一定时,单价和数量成反比例。

例题:在圆柱的侧面积、底面周长、高这三种量中当(  )一定时,(  )与(  )成反比例。

(二)空间与图形

1、圆柱和圆锥

(1)圆柱和圆锥的特征

圆柱 圆锥

底面 两个底面完全相同,都是圆形。 一个底面,是圆形。

侧面 曲面,沿高剪开,展开后是长方形。 曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。

高 两个底面之间的距离,有无数条。 顶点到底面圆心的距离,只有一条。

(2)圆柱的表面积和体积

①要点:圆柱的侧面积 = 底面周长 × 高

圆柱的表面积 = 侧面积 + 底面积 × 2

圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积 × 高,用含有字母的式子表示是:V = sh 或者V = лr²h 。

②例题:用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)

侧面积:3.14 × 3 × 15  = 141.3(平方分米)≈ 142(平方分米)

例题:一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部    抹上水泥。如果每平方米要用水泥20千克,一共要用多少千克水泥?

底面积:25.12 ÷ 3.14 ÷ 2 = 4(米)

3.14 × 4 ² = 50.24(平方米)

侧面积:25.12 × 4 = 100.48(平方米)

表面积:50.24  + 100.48 = 150.72(平方米)

水泥质量:  150.72 × 20 = 3014.4千克

例题:在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?

3.14 ×(0.8÷2)² × 2 × 60 = 60.288(立方米)

(3)圆锥的体积

①要点:圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。即V =  sh 或者V =  лr²h 。

②例题:一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是(    )

例题:把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是(    )立方米

例题:一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

 ×3.14 ×2 ²×1.5×1.8 = 11.304(吨)

2、图形的放大或缩小

①要点:把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。

②例题:一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(     )厘米,宽是(  )厘米,这张图片(    )不变,大小(    )。

一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(   4  )厘米,宽是( 3 )厘米,这张图片(  形状  )不变,大小(  变了  )。

例题:一块正方形的花手帕,边长10厘米,将其按(   )的比放大后,边长变为30厘米。

一块正方形的花手帕,边长10厘米,将其按(3 : 1  )的比放大后,边长变为30厘米。

例题:按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。































3、确定位置等内容

①要点:知道了物体的方向和距离,就能确定物体的位置。

根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。

描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。

②例题:下图是按1︰50000的比例尺绘出的方位图。说一说商店、公园、电影院的位置。

                                            电影院

●30º

●       ●

40º             广场  公园

●  商店

公园在广场的东面(  0.75  )千米处。

量得公园到广场的图上距离是1.5厘米,1.5×50000 = 75000厘米 = 0.75千米

电影院在广场的( 北 )偏( 东 )( 60º )方向( 0.75 )千米处。

商店在广场的( 南偏西 50º方向1.5千米处 )。量得商店到广场的图上距离是3厘米

例题:下图是某市旅游1号车行驶的线路图,请根据线路图填空。

  

旅游1号车从起点站出发,向(    )行驶到达青水公园,再向(    )偏(    )(    )的方向行(    )千米到达抗战纪念碑。

由绿博园向南偏(    )(    )的方向行(    )千米到达购物中心,再向北偏(    )(    )的方向行(    )千米到达人民公园。

旅游1号车从起点站出发,向( 东 )行驶到达青水公园,

再向( 北 )偏(东)(40º)的方向行(1.8 )千米到达抗战纪念碑。

由绿博园向南偏(东)(60º)的方向行(1.7)千米到达购物中心,再向北偏( 东 )(70º)的方向行(1.5)千米到达人民公园。

 

·语文课件下载
·语文视频下载
·语文试题下载

·语文备课中心




下载该资料的word文档
(内含完整公式图片)

点此察看与本文相关的其它文章』『搜索相关课件


上一篇】【下一篇  【教师投稿】 
本站管理员:尹瑞文 微信:13958889955