2、正比例和反比例的意义 教案教学设计(人教新课标六年级第十二册) |
||||
小学数学教学资源网 → 数学教案 → 教学设计 手机版 | ||||
第一课时 教学内容:P39~41 成正比例的量 教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。 2、培养学生概括能力和分析判断能力。 3、培养学生用发展变化的观点来分析问题的能力。 教学重点:成正比例的量的特征及其判断方法。 教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律. 教学过程: 一、四顾旧知,复习铺垫 1、已知路程和时间,求速度 2、已知总价和数量,求单价 3、已知工作总量和工作时间,求工作效率 二、引导探索,学习新知 1、教学例1: 出示:一列火车1小时行驶90千米,2小时行驶180千米, 3小时行驶270千米,4小时行驶360千米, 5小时行驶450千米,6小时行驶540千米, 7小时行驶630千米,8小时行驶720千米…… (1)出示下表,填表 一列火车行驶的时间和路程 时间 路程 填表,思考:在填表中你发现了什么? 时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量) 根据计算,你发现了什么? 相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。 用式子表示他们的关系是:路程/时间=速度(一定)(板书) (2)教师小结: 同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定) 2、教学例2: (1)花布的米数和总价表 数量 1 2 3 4 5 6 7 …… 总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 …… (2)观察图表,发现什么规律? 用式子表示它们的关系:总价/米数=单价(一定) 3、抽象概括正比例的意义。 (1)比较例1、例2,思考并讨论:这两个例题有什么共同点? (2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。 (3)看书P39,进一步理解正比例的意义。 (4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来? x/y=k(一定) (5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件? 4、看书P40例2。 (1)题中有几种量?哪两种量是相关联的量? (2)体积和高度的比的比值是多少?这个比值是什么?是不是一定? (3)它们的数量关系式是什么? (4)从图中你发现了什么? (5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高? 三、课堂小结: 什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量? 四、课堂练习: 1、P41做一做 2、P43~44练习七第1~5题。 第二课时 教学内容:P42 成反比例的量 教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。 2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。 3、初步渗透函数思想。 教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式. 教学难点:利用反比例的意义,正确判断两个量是否成反比例. 教学过程: 一、复习铺垫 1、下面两种量是不是成正比例?为什么? 购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本. 2、成正比例的量有什么特征? Xkb1.com 二、探究新知 1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。 2、教学P42例3。 (1)引导学生观察上表内数据,然后回答下面问题: A、表中有哪两种量?这两种量相关联吗?为什么? B、水的高度是否随着底面积的变化而变化?怎样变化的? C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗? D、这个积表示什么?写出表示它们之间的数量关系式 (2)从中你发现了什么?这与复习题相比有什么不同? A、学生讨论交流。 B、引导学生回答: (3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。 (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定) 三、巩固练习 1、想一想:成反比例的量应具备什么条件? 2、判断下面每题中的两个量是不是成反比例,并说明理由。 (1)路程一定,速度和时间。 (2)小明从家到学校,每分走的速度和所需时间。 (3)平行四边形面积一定,底和高。 (4)小林做10道数学题,已做的题和没有做的题。 (5)小明拿一些钱买铅笔,单价和购买的数量。 (6)你能举一个反比例的例子吗? 四、全课小节 这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。 五、课堂练习 P45~46练习七第6~11题。 第三课时 教学内容:正比例和反比例的比较 教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。 2、使学生能正确判断正、反比例。 3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。 教学难点:正反比例的联系和区别 。 教学重点:能判断正、反比例。 教学过程: 一、复习: 判断:下面每组中的两个量成什么关系? 1、单价一定,数量和总价。 2、路程一定,速度和时间。 3、正方形的边长和它的面积。 4、时间一定,工效和工作总量。 二、新知: 1、出示课题: 2、教学补充例题 出示表1 路程(千米)5 10 25 50 100 时间(时)1 2 5 10 20 表2 速度(千米/时)100 50 20 10 5 时间(时)1 2 5 10 20 分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。 总结路程、速度、时间三个量中每两个量之间的比例关系。 速度×时间=路程 =速度 =时间 判断: (1)速度一定,路程和时间成什么比例? (2)路程一定,速度和时间成什么比例? (3)时间一定,路程和速度成什么比例? 3、比较正比例、反比例的关系 正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。 不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。 三、巩固练习 1、做一做 判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么? 单价一定,数量和总价— 总价一定,数量和单价— 数量一定,总价和单价— 2.判断下面一些相关联的量成什么比例?为什么? (1)除数一定, 和 成 比例。 被除数—定, 和 成 比例。 (2)前项一定, 和 成 比例。 (3)后项一定, 和 成 比例。 (4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。 相关链接:教学设计 人教新课标六年级教学设计
|
·语文课件下载
| |||
下载该资料的word文档 (内含完整公式图片) | ||||
『点此察看与本文相关的其它文章』『搜索相关课件』 | ||||
【上一篇】【下一篇】 【教师投稿】 |