比的基本性质 教案教学设计(人教新课标六年级第十二册) |
||||
小学数学教学资源网 → 数学教案 → 教学设计 手机版 | ||||
教学目的: 1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。 2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。 3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。 教学重点:理解比的基本性质,掌握化简比的方法 教学难点:化简比与求比值0的不同 教学过程: 一、复习。 1、什么叫做比?比的各部分名称是什么? 2、比与除法和分数有什么关系? 比 前项 :(比号)后项 比值 除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值 3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16 4、分数的基本性质是什么?举例: = = 二、新授 1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整) 2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。 6÷8=(6×2)÷(8×2)=12÷16 6:8=(6×2)∶(8×2)=12:16 6:8=(6÷2)∶(8÷2)=3:4 6÷8=(6÷2)÷(8÷2)=3÷4 3、小组派代表说明验证过程,其他同学补充说明。 正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。 (设计意图:在复习旧知的基础上,引导学生合理地推断与猜想,把分数、除法和比联系起来,由商不变的性质和分数的基本性质类推出比的基本性质。) 4、教学例1 (1)出示例题:把下面各比化成最简单的整数比 15∶10 ∶ 0.75∶2 (2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的) (3)指名学生说出自己化简的方法,全班评判。 三、练习 1、P46“做一做” 2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”) 四、总结 今天我们学习了什么知识?比的基本性质可以应用在哪些方面? (3)比的应用 教学目标: 1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。 2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。 3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。 教学重点: 进一步掌握按比例分配应用题的结构特点和解题思路。 教学难点: 正确分析解答比例分配应用题。 教学过程: 一、复习。 1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。 2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答) 二、新授。 1、教学例2。 (1)出示例2: (2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。) (3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。) (4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题) ① 稀释液平均分成的份数:1+4=5 ② 浓缩液的体积:500× =100(ml) ③ 水的体积:500× =400(ml) 答:稀释液100ml,水400ml。 (5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4) (设计意图:使学生认识到检验的目的不仅是验证解答的结果正确与否,更重要的是培养认真负责的学习态度,养成经常地、自觉地进行评价的习惯。) (6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?) 2、补充练习 (1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵? (2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。) (3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。) (4)怎样分别算出各班应种的棵数?引导学生解答: ① 三个班的总人数:47+45+48=140(人) ② 一班应栽的棵数: 280× = 94(人) ③ 二班应栽的棵数: 280× = 90(人) ④ 三班应栽的棵数: 280× = 96(人) 答:一班栽树94棵,二班栽树90棵,三班栽树96棵。 (5)学生进行检验。 (6)学生试做“做一做”中的第2题。 三、巩固练习。 练习十二的第1、3题。 四、布置作业。 练习十二第2、4、5、6、7题。 相关链接:教学设计 人教新课标六年级教学设计
|
·语文课件下载
| |||
下载该资料的word文档 (内含完整公式图片) | ||||
『点此察看与本文相关的其它文章』『搜索相关课件』 | ||||
【上一篇】【下一篇】 【教师投稿】 |