容积/单元复习 教案教学设计(人教新课标五年级第九册) |
||||
小学数学教学资源网 → 数学教案 → 教学设计 手机版 | ||||
教学内容:容积 教学目标: 1、知道容积的意义。 2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。 3、会计算物体的容积。 教学重点: 1、容积的概念。 2、容积与体积的关系。 教学难点: 容积与体积的关系。 教具:量筒和量杯、不同的饮料瓶 、纸杯 教学过程: 一、复习检查: 说出长正方体体积计算公式。 二、准备: 把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。 三、新授: 1、认识容积及容积单位: (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。 通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。 (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。 (3)演示:体积单位与容积单位的关系。 说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。 ①1升(L)=1000毫升(mL) 将1升 的水倒入1立方分米的容器里。 小结:1升(L)=1立方分米(dm3 ) ②1升 = 1立方分米 1000毫升 1000立方厘米 1毫升(mL)=1立方厘米( cm3 ) 练一练: 1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L 1.5dm3 =( )L (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯? (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。 2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。 例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升? 5×4×2 =40(立方分米) 40立方分米=40升 答:这个油箱可以装汽油40升。 做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正) 小结:计算容积的步骤是什么? 3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢? 出示一个西红柿,谁有办法计算它的体积?小组设计方案: 四、巩固练习: 1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升? 2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米? 3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少? 4、提高题:p55、16 五、作业: 单元复习 第一课时: 复习目标: 1、使学生对长正方体的有关概念掌握得更加牢固。 2、进一步掌握长正方体的表面积和体积的计算。 3、体积单位的进率。 复习重点: 长正方体的表面积和体积的计算。体积单位的进率。 复习用具:长正方体的学具。 复习过程: 一、复习单元的主要内容:(板书:长方体和正方体) 问:看到课题你能想到到哪些知识? 1、特征及关系: 长方体 正方体 顶点 8个 8个 面 6个(相对的两个面相等)6个面都相等 棱 12条棱(相对的棱长度相等)12条棱长度相等 正方体是特殊的长方体。(集合图) 2、表面积:怎样求长正方体的表面积?(说出公式) 3、体积和容积: (1)、体积单位:立方米、立方分米、立方厘米。 (2)、容积单位:一般用体积单位,计量液体时用:升、毫升。 (3)、体积和容积的计算:(说出公式) 二、练习: 1、填空: (1)表面积和体积的意义不同,表面积是物体 的大小,体积是物体所占 的大小。 (2)、表面积和体积所用的计量单位不同,计量表面积用 单位。常用的单位有 、 、 ;相邻的两个面积单位间的进率是 。计量物体体积用 单位,常用的有 、 、 ;相邻的体积单位间的进率是 。 (3)、表面积和体积的计算方法不同。计算正方体的表面积是 ;计算正方体的体积是 或 。 计算长方体的表面是 ;计算长方体的体积是或 。 (4)、 一个正方体,棱长是8分米,这个正方体的棱场之和是 ;表面积是 ;体积 。 (5)、一个长方体,长2米,宽5分米,高0.4分米。这个长方体的表面积是 ;体积是 。 (6)、一根长方体材料,宽3分米,厚2厘米,体积是0.12立方米。这根木材的长是 ,放在地上占地面积最大是 。 2、判断: (1)、长方体中可以有两个相同的面是正方形。 ( ) (2)、长方体中相对的4条棱长度相等。 ( ) (3)、正方体的6个面是完全一样的正方形。 ( ) (4)、长方体相邻的两个面一定不完全相同。 ( ) (5)、用同样大小的小正方体拼成一个大正方体,最少要用8个这样的正方体。 ( ) (6)、长方体中有四个面是完全一样的长方形。 ( ) (7)、当正方体的棱长是6厘米时,它的表面积和体积就相同。 ( ) 3、选择正确答案: (1)、 3.05立方米=( ) A 305立方分米 B 3050立方分米 C30.5立方分米 (2)、 4560立方分米=( ) A、4.56升 B、4560升 C、4.56立方米 三 、作业: 第二课时: 复习目标:通过动手操作,使学生对长方体和正方体的面积和体积等知识得以巩固。培养学生运用所学知识解决实际问题的能力,进一步培养学生的空间观念。 复习重点: 通过动手操作,使学生对长方体和正方体的面积和体积等知识得以巩固。 复习难点: 运用所学知识解决实际问题的能力,进一步培养学生的空间观念。 复习用具:火柴盒,尺子,幻灯。 复习过程: 一、准备: 1、揭示课题: 今天我们上一节长正方体的表面积和体积的练习课。 2、拿出火柴盒,汇报侧量长宽高的结果。 外套:长4.5厘米、宽3.5厘米、高1.5厘米 内盒:长4.3厘米、宽3.4厘米、高1.4厘米 3、小组活动: 根据以上条件,想一想可以求什么?(摆放的位置,求哪些面) 只列算式。 商标面在上、磷面在上、非磷面在上的表面积和体积的求法。如:求磷面的总面积,求外套至少用多少平方厘米, 求内盒至少用多少平方厘米,求怎样设计内盒最合理(最省料),求火柴盒的容积,求火柴盒的体积等。 二、研究:(先摆,互相说,列式。) 1、把火柴盒最大的面相对,拼成一个长方体。求新长方体的表面积。(还可以怎样拼成一个长方体?) 如果10盒火柴包成一包,怎样码放最省包装纸?( 小组合作摆一摆) 如果用长45厘米,宽30厘米,高15厘米的硬纸盒装,能装火柴多少盒?(讨论一下怎样求。) 三、通过刚才的练习你有什么体会? 四、巩固练习: 1、学校要靠墙修一个长4.5米,宽3.5米,高1.5米的长方体领操台,要在领操台的表面(四个面)抹一层水泥,求抹水泥的面积是多少平方米? 2、学校有一个长43分米,宽34分米,深5分米的沙坑,沙坑内沙面离坑口1分米。求沙坑内沙子的体积是多少立方分米?若每立方分米沙子重1.4千克,长满这个沙坑需要沙子多少千克? 3、一列火车有容积相同的车厢20节,每节车厢从里面量长13米,宽2.5米,装煤的高度是1.2米。这列火车每次运煤多少立方米?(独立完成:先求体积,再求20个这样的体积。)13×2.5×1.2×20=78(立方米) 补充问题: (1)、每立方米煤重1.4吨,这列火车共运煤多少吨?(质量=比重×体积) 1.4×78=109.2(吨) (2)、这批煤由甲乙两个运输队全部运走,甲队运的吨数是乙队运的2.5倍。两队各运多少吨? 分析:,甲队运的吨数是乙队运的2.5倍。 想: 甲乙运的和是3.5倍的数,109.2吨就是甲乙的和。 乙: 109.2÷(2.5+1)=3.12(吨) 甲: 3.12×2.5=7.8(吨) 4、一个正方体水箱的容积是125立方分米,把这一满水箱水全部注入到一长方体水箱内。已知长方体水箱长10分米,宽5分米,这个水箱内的水深多少分米? 你想怎样解答?独立完成,汇报。 方法一:解:设这水箱内的水深是X分米。 10×5X=125 50X=125 X=125÷50 X=2.5 5、一个正方形的铁板(如图),从四个顶点个边长2分米的正方形后,所剩下部分正好焊接成一个正方体铁皮盒。(铁皮厚度忽略不计。) (1)这个铁皮的容积是多少立方分米? (2)这个铁皮盒用铁皮多少平方分米? (3)原来铁皮的面积是多少? 6、有一个长方体玻璃缸,长3分米,宽2分米。放入一块不规则的石头后水深1.5分米,捞出这块石头后,水面下降了0.5分米。这块石头的体积是多少? 相关链接:教学设计 人教新课标五年级教学设计
|
·语文课件下载
| |||
下载该资料的word文档 (内含完整公式图片) | ||||
『点此察看与本文相关的其它文章』『搜索相关课件』 | ||||
【上一篇】【下一篇】 【教师投稿】 |