五年级(下)各单元重点知识归纳表(第一稿) 教案教学设计(人教新课标五年级第十册)

小学数学教学资源网数学教案教学设计 手机版


 具体内容 重点知识 学生的实际学习难点

轴对称 1.轴对称的意义:把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称;这条直线就是对称轴。两个图形完全重合时的点叫做对应点;互相重合的角叫做对应角,互相重合的线段叫做对应线段。

2.轴对称的性质:对应点到对称轴的距离相等。

3.轴对称的特征:沿对称轴对折,对应点、对应线段、对应角重合。

旋转 1.旋转的意义:物体绕着某一点运动,这种运动叫做旋转。

2.图形旋转方向:钟表中指针的运动方向成为顺时针旋转;反之,称逆时针旋转。

3.图形旋转的性质:图形绕着某一点旋转一定的度数,图形中的对应点、对应线段都旋转相应的度数,相对应的点到旋转点的距离相等,对应角相等。

4.图形旋转的特征:图形旋转后,形状、大小都没有发生变化,只是位置变了。



设计图案的基本方法 1.设计图形的基本方法:利用平移、旋转或对称,可以设计简单而美丽的图案

2.运用平移设计图案的方法:(1)选好基本图形;(2)确定平移的距离;(3)确定平移方向;(4)画出平移后的图形

3.运用平旋转计图案的方法:(1)选好基本图形;(2)确定旋转点;(3)定好旋转角度;(4)沿每次旋转后的基本图形的边缘画图。

4.运用对称设计图案的方法:(1)选好基本图形;(2)定好对称轴;(3)画出基本图形的对称图形。

五年级(下)各单元重点知识归纳表(第一稿)

第一单元:图形的变换

第二单元:因数与倍数

具体内容 重点知识 学生的实际学习困难

因数和倍数 1.因数和倍数的意义:如果a×b=c(a、b、c都不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。

2.数与倍数的关系:因数和倍数是两个不同的该概念,但又是一对相互依存的概念,不能单独存在。

3.找一个数的因数的方法:(1)列乘法算式:根据因数的意义,有序地写出两个乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因能数。(2)列除法算式:用此数除以大于1等于1而小于等它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。

4.找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。

2、3、5的倍数的特征 1.2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

2.奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

3.奇数、偶数的运算性质:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小),奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

4.5的倍数的特征:个位上是0或5的数都是5的倍数.

5.3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

质数和合数 1.质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

2.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。

3.分解质因数:把一个合数用质数相乘的形式表是出来,就是分解质因数。

4.分解质因数的方法:(1):“树枝”图式分解法;(2)短除法分解。

第三单元:长方体和正方体

具体内容 重点知识 学生的实际学习困难

长方体(正方体)的特征 1.长方体的特征:有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点

2.正方体的特征:正方体的6个面完全相同;12条棱的长度全相等;有8个顶点。

3.长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体和正方体的表面积 1.表面积的意义:长方体或正方体6个或5个面的总面积,叫做它的表面积。

2.长方体的表面积的计算方法:(2个)

3.正方体表面积的计算方法:正方体的表面积=棱长2×6

长方体和正方体的体积 1.体积的意义:物体所占的空间的大小叫做体积。

2.体积单位:立方米、立方分米、立方厘米;字母表示:m3,dm3,cm3。

3.体积单位间的进率:1 m3 =1000dm3   dm3  =1000cm3.

4.容积的意义:箱子、油桶等所能装下物体的体积,叫做箱子等的容积。

5.容积的单位和容积单位之间的进率:1L=1000ml

6.容积单位和体积单位之间的换算:1L= dm3   1 cm3.=1 ml

7.长方体体积计算公式和正方体体积计算公式。

8.容积与体积的计算方法相同,只是要从里面量它的长、宽和高。



第四单元:分数的意义和性质

具体内容 重点知识 学生的实际学习困难

分数的产生和意义 1.单位“1”的意义:一个物体、一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。

2.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

3.分数单位意义:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

4.分数与除法的关系:被除数÷除数=被除数除数 ,反来,分数也可以看作两个数相除,分数的分子相等于被除数,分母相等于除数,分数相等于除号。

5.“求一个数是(占)另一个数的几分之几”的问题的解题办法:用一个数除以另一个数。

真分数和假分数 1.真分数的意义:分子比分母小的分数叫做真分数。

2.真分数的特征:真分数﹤1。

3.假分数的意义:分子比分母大或等于分母的分数叫做假分数。

4.假分数的特征:假分数≦1。

5.带分数的意义:由整数(不包括0)和真分数合成的数叫做真分数。

6.带分数的读法:先读整数部分,再读分数部分,中间加“又”字。

7.带分数的写法:先写整数部分,再写分数部分,分数部分的分数线与整数的中间对齐。

8.假分数化成整数或带分数的方法:用分子除以分母。当分子是分母倍数时,能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。

分数的基本性质 1.分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变,这就是分数的基本性质。

2.分数基本性质的运用:可以把不同分母的分数化成同分母分数,也可以把一个分数化成指定分母的分数。

约分 1.公因数和最大公因数的意义:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做它们的最大公因数。

2.求两个数的最大公因数的方法:(1)列举法;(2)先找出两个数中较小数的因数,再圏出是另一个数的因数,再看哪一个最大;(3)分解质因数法;(4)短除法。

3.求两个数的最大公因数的特殊方法:(1)当两个数成倍数关系时,较小数是这两个数的最大公因数。(2)当两个数是互质数时,最大公因数是1。

4.约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做分数。

5.最简分数的意义:分子和分母只有公因数1的分数。

6.约分的方法:(1)逐步约分;(2)一次约分。

7.公因数只有1的两个数,叫做互质数。

通分 1.公倍数和最小公倍数的意义:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个数,叫做最小公倍数。

2.求两个数最小公倍数的方法:(1)列举法(2)先求出两个数中较大数的倍数,按从小到大的顺序圈出较小数的倍数,第一个圏的就是它们的最小公倍数(3)分解质因数法(4)短除法。

3. 求两个数的最小倍数的特殊方法:当两个数成倍数关系时,较大数是这两个数的最小公倍数。(2)当两个数是互质数时,这两个数的乘积就是它们最小公倍数。

4.通分的意义:把异分母的分数分别化成和原来分数相等的的同分母分数,叫做通分。

5.通分的方法:通分时用原分母的公倍数作公分母,一般选用最小公倍数作公分母,然后把各分数化成用这个最小公分母作分母的分数。

分数和小数的互化 1.小数化成分数的方法:有限小数可以直接写成分母是10、100、1000…的分数。原来有几位小数,就在1后面写几个零作分母,把原来的小数点去掉作分子。能约分的要约分,化成最简分数。

2.分数化成小数的方法:(1)分母是10,100,1000…的分数化成小数,可以直接去掉分母,看分母1后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。(2)分母不是10,100,1000…的分数化成小数,用分子除以分母,除不尽时,按“四舍五入”法保留几位小数。

第五单元:分数的加法和减法

具体内容 重点知识 学生的实际学习困难

同分母分数加、减法 1.分数加法的意义:和整数加法的意义相同,就是把两个数合并成一个数的运算。

2.分数减法的意义:与整数减法的意义相同,已知两个数的和与其中的一个加数,求另一个加数的运算。

3.分数加、减法的计算方法:分母不变,分子相加减。

4.同分母分数连加的计算方法:从左到右依次计算,也可以直接把加数的分子连加起来,分母不变。

5.同分母分数连减的计算方法:从左到右依次计算,也可以直接用被减数的分子连续减去两个减数的分子,分母不变。

异分母分数加、减法 异分母分数加、减法的计算方法:一般先通分,化成同分母的分数,然后按照同分母分数加、减法的方法计算。

分数加减混合运算 1.分数加减混合运算的顺序:与整数加减混合运算的顺序相同。没有括号的,按照从左到右的顺序进行计算;有括号的,先算括号里的,然后算括号外的

2.分数加法的简算:整数加法的运算定律在分数加法中同样适用。

第五单元:统计

具体内容 重点知识 学生的实际学习困难

统计 1.众数的意义:在一组数据中,出现次数最多的数,是这组数据的众数。

2.众数的特征:能够反映一组数据的集中情况。

3.复式折线统计图:在计量过程中存在两组数据,而又需要在一个统计图中表示这两组数据时,就要用两种不同形式的折线来表示不同数量变化情况的折线统计图。

4. 复式折线统计图的特点:能表示两组数据数量的多少,数量的增减变化情况,还能比较两组数据的变化趋势。

5.复式折线统计图的制作:(1)根据两组数据量多少和图纸大小,画出两条相互垂直的射线;(2)在水平射线上确定好各点的距离,分配各点的位置;(3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示的数量;(4)用不同的图例表示两组不同的数据;(5)按照数据大小描出各点,再用线段顺次连接;(6)标出题目,注明单位、日期。

数学广角

具体内容 重点知识 学生的实际学习困难

数学广角 找次品的最优方法:把待测物体分成3份,要分得尽量平均,不能够平均分的,也应该使多的一份与少的一份只相差1.

 

·语文课件下载
·语文视频下载
·语文试题下载

·语文备课中心




下载该资料的word文档
(内含完整公式图片)

点此察看与本文相关的其它文章』『搜索相关课件


上一篇】【下一篇  【教师投稿】 
本站管理员:尹瑞文 微信:13958889955