比例尺22(北师大版一年级教案设计)

小学数学教学资源网数学教案教学设计 手机版


 教学内容:P54 – 56

教学目标:

使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。

教学难点:

由于图上距离和实际距离习惯使用的单位不同,因此方程的解应使用哪个长度单位是个难点。

教学过程:

一、引入:

   同学们,你们会画长方形吗?

   现在请大家在本子上画一个长20米,宽8米的长方形你能吗?

   怎么办?

   我们在绘制地图和其它平面图形的时候,城要把实际距离缩小(或扩大)一定的倍数后再画到纸上,这时就要涉及到一种新的知识——比例尺。

二、教学新课:

1、出示例1。

⑴、根据题意,写出比。

⑵、单位不同,要化成相同单位以后,再化简比。

      12厘米 :240米 

= 12厘米 :24000厘米

= 12:24000

= 1:2000

⑶、图上距离和实际距离的比,叫做比例尺。

2、揭示比例尺的意义。

⑴、图上距离和实际距离的比,叫做比例尺。

    图上距离 :实际距离 = 比例尺

      或: 图上距离 实际距离 = 比例尺

为了计算方便,通常把比例尺写成前项(或后项)是1的比。

上题中的比例尺可以写为: 1 600 

由上面关系式,已知其中两个条件,能否求出第三个关系式?(请学生说出其它两个关系式)

3、教学例2。

在比例尺是1:30000000的地图上量得上海到北京的距离是3.5厘米,上海到北京的实际距离大约是多少千米?

思考: 怎样根据比例尺的数量关系求出实际距离。

请学生试一试,有几种不同的方法?如不用方程解可怎么做?

4、试一试。

P55

三、巩固练习:

1、一幅地图,图上20厘米表示实际距离10千米。求这幅地图的比例尺。

2、P56    1

先量一量,再算一算。

四、小结;

1、这节课我们学习了什么?

2、划出书中概念。

3、熟记三个数量关系。

五、作业     P56 2~4  (3、4两种方法)

求图上距离和线段比例尺

教学内容:P56 – 58

教学目标:

1、使学生进一步理解比例尺的意义,掌握比例尺的关系式,并能正确地计算图上距离。

2、使学生了解数值比例尺和线段比例尺的概念,能看懂并应用线段比例尺,计算实际距离。

教学过程:

一、复习:

1、概念复习。

2、在一幅平面图上,用4厘米的线段表示实际距离16米,求比例尺。

3、根据比与除法的关系,你能推导出已知实际距离和比例尺,计算图上距离的方法吗?

二、新授:

1、教学例。

一座地面是长方形的厂房,长45米,宽25米。把它画在比例尺是 1 200 的设计图上,长、宽各是多少厘米?

列算式解:

45米 = 4500厘米

25米 = 2500厘米

   长:4500× 1 200 =  45 2 =22.5(厘米)

   宽:2500× 1 200 =  25 2 =12.5(厘米)

列方程解:

   解:设厂房设计图长x厘米,宽y厘米。

          x 4500 =  1 200                  y 2500 =  1 200 

            x = 4500× 1 200             y = 2500× 1 200 

            x = 22.5                   y =12.5

   答:长是22.5厘米,宽是12.5厘米。

2、试一试。

P57 

3、介绍线段比例尺。

线段比例尺是在图附有一条注有数目的线段,用来表示和地面上相对应的实际距离。如例的比例尺, 1 200 的数值比例尺,可换成如下的线段比例尺:    

  表示图上1厘米的线段,相当于地面上的距离是2米。

想一想:一幅地图上附有如下的线段比值尺,图上1厘米的线段相当于地面上实际距离是(          )。

三、巩固练习:

1、P58 – 1   。

2、P58 – 5   量一量、算一算。

四、小结:

    这节课我们学习了什么?

一、作业:

P58 –2~4

练习八

教学内容:  P58 – 60

教学目标:

使学生进一步理解、掌握比例尺的意义,能正确根据数据值比例尺计算图上距离或实际距离,提高解决实际问题的能力。

教学过程:

一、基本练习:

    把数值比例尺1 :4000000改写成线段比例尺拓附有这样的线段比例尺的地图上,两地距离是4. 2厘米,实际距离是多少千米?

二、操作练习:

1、实验室是一个长方形,长8米,宽6米,用 1 200 的比例尺画一幅平面图。

长:8米 = 800厘米

宽:6米 = 600厘米

分析:要画平面图,先要算出图上距离;

      再画图。

2、P59 – 5

   先量一量,再画一画。

3、P59 – 6

先量图上距离,再求实际距离。

三、小结:

你还有什么不懂的地方?

四、作业:

P58-59  1、2、4(格式指导)

五、思考题辅导:

   先量出上底、下底及高的图上距离,然后根据比例尺求出实际距离,再根据公式算出梯形的面积。

   想一想:能不能先求出图上梯形的面积,再根据比例尺算出梯形的实际面积?

比例的意义和性质

教学内容:P66 – 68

教学目标:

使学生理解和掌握比例的意义的基本性质。

教学过程:

一、复习:

在下面各比中,把比值相等的比用线连起来:

 5 :8          1.5 :2.5

 4 :6           5 12 : 2 3 

12 :10          1 :1 1 2 

10 :25         0.6 :1.5

二、新授:

1、比例的意义。

教学例1,先让学生看书

提问:

⑴、判断两个比能不能组成比例,关键看什么?(表示两个比的比值是否相等)

⑵、如果不能很快看出两个比的比值是否相等,怎么办?(化简比)

⑶、比和比例有什么区别?(比是表示两个数相除,有两个项;而比例则是表示两个比相等的式了,有四个项。)

⑷、用3、5、240、400,能组成比例吗?能组成哪些比例?

接着以例1为例,讲比例的各部分名称,并用文字注明。

               240 :3 = 400 :5

2、比例的基本性质。

⑴、在这个比例里,两个外项的积是240×5=1200

两个内项的积是3×400=1200

所以,3×400 = 240×5

如果把比例写成分数形式,就是等号两边两个比的前后项交叉相乘。

               30 600    =     500 600 

⑵、引导发现:在比例里,两个外项的积等于两个内项的积。

⑶、试一试:P67

三、巩固练习:

1、下面几组中的两个可以组成比例吗?把能组成比例的写出来。

    P67

2、从1、2、4、8、24中选出四个数组成比例,并验证是否正确。

3、根据3×12 = 4×9,至少写出两比例式。

四、小结

这节课你学会了什么?

1、什么叫比例?

2、什么叫比例的项、外项和内项?

3、什么是比例的基本性质?

五、作业:

1、用4、6、10、15四个数组成不同的比例。

2、写出两个比值是3的比,并组成比例。

解比例

教学内容:P69 – 70

教学目标:

1、进一步理解、掌握比例的意义和基本性质;

2、能运用比例的基本性质解比例。

教学过程:

一、复习:

1、什么叫比例?

2、什么是比例的基本性质?

3、怎样检查两个比是否成比例?

二、新授:

1、先请学生心里想好一个比例(数目简单些),如2 :3 = 4 :6,只告诉其他同学其中的三项,让大家猜一猜还有一个数字是什么?

2、根据比例的基本性质,如已知比例中的任何三项,就可以求出另一个未知项。

3、求比例中的未知项,叫做解比例。

4、例2  解比例:

5、例3  解比例     

①、请学生独立尝试;

②、注意格式;

③、反馈练习。

三、巩固练习:

1、解比例:

   5 7 =  X 4      3.5 0.8 =  2.5 X    5 :X =  1 3 : 3 4      2.5 8 =  2 X 

2、P70练习 1

四、小结:

这节课学习了什么?

五、提高练习:

1、已知一个比例的三项是2 、1.5 、3,另外一项可能是几?

2、根据4×5 = 2×10,写出四个不同的比例。

六、作业:

P70 – 1  解比例

P70 – 2  解比例

正比例

教学内容:P702– 75

教学目标:

1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;

2、培养学生仔细审题,认真思考,探索规律的良好习惯。

教学重难点:

理解正比例的意义和性质。

教学过程:

一、复习引入:

我们已学了一些常见的数量关系,谁能来说一说:

1、路程、速度、时间;

2、单价、数量、总量;

3、工作效率、工作时间、工作总量;

    ……

二、先观察、后概括:

1、例1:一列火车行驶的时间和路如下表:

时间(小时)1 2 3 4 5 6 ……

路程(千米)60 120 180 240 300 360 ……

观察上表,回答下列问题:

⑴、表中有哪两个量是相关联的?

⑵、路程是怎样随着行车时间的变化而变化的?

⑶、相对应的路程和时间的比分别是多少?比值是多少?

从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。

写成关系式是:      路程 时间 = 速度(一定)

2、新改例2:一种铅笔,支数与总价如下表:

支  数)1 2 3 4 5 6 ……

总价(元)0.3 0.6 0.9 1.2 1.5 1.8 ……

由上表可以发现什么特征?

(哪几个量是相关联的?这两个相关联的量之间有什么关系?)

写成关系式是: 总价 支数 = 单价(一定)

比较例1、例2,它们有什么共同点?

概括:

⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。

⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:

                 Y  X = K(一定)

(结合例1、例2说一说)

3、练一练   P75  NO.1

三、巩固练习: 

1、P76  NO.1    看后判断,并连起来说 一说。

2、P76 – 2    先观察,再分析。

3、P76 – 3  

四、小结:

要判断两个量是否成正比例,依据什么来判断?

1、两个相联的量?

2、一个量随着另一个量的变化而变化,并且它们的比值一定。

五、作业:

P76      3   4

练习十一

教学内容:P76   1– 5

教学目标:

1、使学生进一步理解、掌握正比例的意义和性质,并能正确判断成正比例的量;

2、培养学生观察、分析问题的能力。

教学过程:

一、观下图表,回答问题:

时间(时)1 2 3 4 5 6 7

米  数 22 44 66 88 11 132 154

上表中(    )和(    )是两种相关联的量,(    )随着(    )的变化而变化的,(    )一定,时间和米数是(      )的量。

二、判断下面各题中的两种量是不是成正比例关系,并说理。

1、白糖单价一定,白糖数量和总价;

2、稻谷的出米率一定,碾成大米重量和稻谷重量;

3、一个人的身长和体重;

4、订《小学生世界》报份数和总价;

5、长方形的长一定,宽和面积;

5、长方形的面积一定,长和宽。

三、练习:

1、请举出成正比例关系的量。

⑴、圆周长与圆半径;

⑵、圆面积与圆半径;

⑶、正方形的周长与边长。

   ……

四、小结:

   你还有什么不明白的地方?

五、作业:

P77 – 4

反比例

教学内容:P83– 85

教学目标:

1、使学生初步理解反比例的意义和性质,能够正确判断成反比例的量;

2、培养学生仔细审题,认真思考,探索规律的良好习惯。

教学重难点:

理解反比例的意义和性质。

教学过程:

一、复习

判断下列哪些是成正比例的量:

1、课桌单价、数量和总价;

2、汽车的载重量、运货次数和运货总量;

3、铺地面积、方砖面积和方砖块数;

4、速度、行驶路程和时间;

5、每小时织布数、织布总米数和时间;

6、跳高的高度和身高

二、新授:

1、例:面积相等的长方形,长和宽有如下关系:

宽(厘米)1 2 3 4 5 6 ……

长(厘米)30 15 10 7.5 6 5 ……

观察上表,回答下列问题:

⑴、表中有哪两个量是相关联的?

⑵、长是怎样随着宽变化而变化的?

⑶、长和宽相乘的积表示什么?它们是否相等?

从上表可以看出:长和宽是两种相关联的量,长是宽时间的变化而变化的,

宽扩大2倍、3倍……长反而缩小2倍、3倍……;宽缩小2倍、3倍……长反而扩大2倍、3倍……。并且长和宽的积总是一定的,这个积30实际上就是长方形的面积。

写成关系式是:     长×宽=长方形的面积(一定)

2、例2:加工一批零件,每小时加工的个数和所需的时间如下表:

第小时加工个数 60 30 20 15 12 ……

加工时间(小时)5 10 15 20 25 ……

由上表可以发现什么特征?

    哪几个量是相关联的?

    这两个相关联的量之间有什么关系?

    写成关系式是什么?

比较例1、例2,它们有什么共同点?

概括:

⑶、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着缩小(或扩大)几倍,这两种叫做成反比例的量,它们之间的关系叫做反比例关系。

⑷、两种量成反比例关系,那么这两种量中相对应的两个数的积一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:

               X × Y= K(一定)

(结合例1、例2说一说)

3、练一练   P86   1

三、巩固练习: 

1、P86 – 2    看后真空,并连起来说一说。

2、P86 – 3    先观察,再说理。  

四、小结:

要判断两个量是否成反比例,依据什么来判断?

3、两个相联的量?

4、一个量随着另一个量的变化而变化,并且它们的积一定。

五、作业:

P86 – 87    3-----5

练习拓展课

教学内容: P87– 88

教学目标:

1、使学生进一步理解和掌握反比例的意义和性质,并能正确判断成反比例的量;

2、培养学生观察分析问题的能力。

教学过程:

一、基本练习:

1、从甲城到乙城,速度和时间有如下关系:

速度(千米/时)6 15 20 30 60

时间(时)10 4 3 2 1

上表中,(    )和(    )是两种相关联的量,(    )随着(    )的变化而变化的,它们的(    )一定,速度和时间是(         )的量。

2、王老师带的钱可以买25元一只的排球6只或30元一只的小足球5只。

⑴、算出王老师一共带了多少钱?

⑵、总价一定,数量和单价有什么关系?

⑶、把球的单价和买的只数用等式表示出来?

二、判断练习:

判断下面各题中的两种量是不是成比例关系,是成什么比例关系?

⑴、书本的单价一定,本数和总价;

⑵、小明从家里步行到学校,步行的速度的时间;

⑶、前进的路程一定,四轮的直径和滚动的转数;

⑷、化肥的数量一定,每公顷的施用量和施肥的公顷数;

⑸、每人的工作效率一定,工作时间和工作量;

⑹、被减数一定,减数和差;

⑺、总产量一定,单位面积产量和种植面积;

说一说判断,并说理。

三、举例:

1、反比例的例子。

2、A、B、C、三种量的关系是B×C = A。

如A一定,那么B、C成(    )比例关系;

如B一定,那么A、C成(    )比例关系;

如C一定,那么A、B成(    )比例关系;

四、小结:

   你还有什么不懂的地方?

五、作业:

  P89–1----5

用反比例方法解应用题

教学内容:P91 – 92

教学目标:

1、使学生掌握用反比例的方法解应用题的步骤,并能正确地解答;

2、使学生进一步明确比例解法的优越性。

教学过程:

一、复习准备:

1、三角形面积一定,底和高成什么比例?为什么?

2、甲、乙两种量,只要它们相对应的数的积一定,这两种量一定成反比例,对吗?举例说明?

二、新授:

1、教学例4 。

   例2:一艘轮船每小时航行20千米,6小时可以到达目的地。如果要5小时到达,每小时航行多少千米?

   观察:

⑴、题中有哪几个量?

⑵、从题中可见哪个数量是一定的?

   分析:

   想:因为速度 ×时间 = 路程,由于6小时与5小时航行路程相同,可确定行驶的速度与时间成反比例,所以两次航行与时间的乘积相等。

   解:设每小时需航行X千米。

       5X = 20×6

        X =  120 5 

        X = 24

(检验)

答:每小时需盘航行24千米。

2、改条件:“5小时到达”为“每小时行32千米”,应怎样列式?

3、试一试。

甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

分析:⑴、从已知数量可知,哪个量是一定的?

      ⑵、可利用比例解题,也可利用一般方法解题?

三、巩固练习:

张诚读一本故事书,每天读12页,13天可以读完;如果每天读26页,几天可以读完?(多种方法解)

四、小结:

今天学习了什么?

五、作业:

P92 –   1—2  3~5(5两种方法)

练习十三

教学内容:  P92– 93

教学目标:

1、使学生进一不掌握用比例解应用题的步骤,并能正确解答;

2、通过练习,引导总结,用比例解的一般步骤。

教学过程:

一、基本练习:

判断成什么比例关系?

1、生产的洗衣机总台数一定,每天生产的台数和所用的天数。

2、每天生产洗衣机的台数一定,生产总台数与天数。

3、小明从校到家走路的速度和所需的时间。

4、《小星星报》单价一定,份数和总价。

二、练习:

1、一只手表3.5小时慢2.1秒,照这样计算,每昼夜要慢多少秒?

⑴、照这样算“什么意思”,意味着什么一定?

⑵、用比例方法解?

⑶、用一般方法怎样?

2、一种钢丝,20米重5千米,称同样的一捆钢丝重113千克,这捆钢丝长多少千米?

   分析:用比例解:

⑴、观察哪个数量是一定?

⑵、用正比例解还是反比例解?

  列出不同方法解。

3、把2 米长的竹竿立在地上,量得它的影子长是1.8米。同时量得附近电线杆的影长是5.4米,这根电线杆长是多少米?(用比例解)

⑴、先判断哪个量成比例;

⑵、成什么比例;

⑶、列出比例式(或称方程)。

上题用比例方法怎样解?有几种不同的列式法,为什么?

三、提高练习:

1、煤厂有煤600吨,运输队4次共运走120吨,照这样算,运17次后还剩多少吨?

分析:你有几种不同的解题思路?

⑴、用比例方法: 确定不变量

① 、解:设17次后还剩X吨。(每次运的吨数不变)

    120 4 =  600-X 17 

②、解:设17天运了X吨。(每次运的吨数不变)

    120 4 =  X 17 

⑵、用一般方法解:

①、600 – 120÷4×17

②、600 – 120×(17÷4)

2、P93 –2---5

想一想:有什么不同的方法解题?板演,并分析.

四、作业:

P93 – 6----8

练习(二)

教学内容:  P94 – 95

教学目标:

1、使学生掌握按比例分配应用题的特征和解答方法,能正确进行解答;

2、培养解决实际问题的能力。

教学过程:

一、基本练习:

    你可以想到什么?

1、某班男、女生人数比是5 :4;

2、柳树、杨树棵数比是1 :6;

3、科技书和故事书比是5 :4。

三、练习:

1、学校有故事书80本,故事书和科技书的本数之比是2 :3,科技书有多少本?

2、学校图书馆故事书80本,故事书、科技书和连环画的本数之比是2:3:4,科技书有多少本?

3、改编1题中的故事书80本为科技书有80本。

4、改编1题中的故事书80本为故事书比科技书少16本。

   分析:每题有多种不同的解法,想想你能列出几种不同的解法?

三、思考并分析P9412---14,分析后由学生选择练习,并相互校对.

四、作业:

    P94 – 15

    思考题:

练习课

教学内容:根据学生练习反馈情况确定

教学目标:

使学生进一步掌握比例应用题的特征和解答方法,并能正确解答。

教学过程:

一、根据关键句联想:

1、人体血液的体重的比是1 :13;

2、药与水的比是1 :200;

3、黄瓜与青菜的种植面积的比是5 :8。

二、基本练习:

    一种药水重3003千克,药与水的比重是1:1000,需水和药各多少千克?(改药与药水的比重是1:1001)

三、提高练习:

1、甲乙两队共修一条长1500米的路,甲队有35人,乙队有15人,按各队的人数据分配任务,问两队各应修多少米?

想:按人数分配,考虑人数比:35 :15 = 7 :3。

把全长1500米按7 :3 的比例进行分配。

2、有50个人支修路,一条路长750米,另一条路长500米,如果按路的长度进行分配人数,这两条路各应分配几人?

  想:按路的长度分配,就是按750 :500 = 3 :2的比例进行分配。

四、综合练习:

思考题:(求出发数的最小公倍数,再看每人中的发数)  (315发)

五、作业:

综合练习部分

复习(一)

教学内容:  P95 – 96

教学目标:

1、通过复习,使学生进一步理解和掌握比和比例以及正比例、反比例的意义和性质,并级正确应用于解答有关的问题;

2、培养学生仔细审题,认真解答的良好习惯。

教学过程:

一、知识整理:

这一单元我们学习了哪些基本内容?

1、比的意义、性质;

2、比例的意义、性质;

3、怎样判断两量是否成正、反比例;

4、正、反比例应用题和按比例分配的应用题。

二、练习:

1、求下面各比的比值。

P95 –1   (前两列) 

说说求比值的方法,

说说比的各部分名称

说说比与分数、除法的关系。

2、化简下面的比。

P96 – 2(前两列)

3、写出下面各最简整数比。

P96 – 3  填空

4、解比例。

P96 – 5(3题)

说说解比例的依据是什么?

三、正、反比例练习:

1、P96 – 7

⑴、是否成比例?

⑵、成什么比例?

⑶、为什么?

①、总量一定(积一定),成反比例;

②、高一定(商一定),面积与底边长成正比例;

③、正方体体积 = 棱长×棱长×棱长   

体积与棱长的比(商)是棱长的平方,这个商随着棱长的大小要发生变化,不是一定的,所以体积与棱长不成比例?

2、判断:P97– 7

说说为什么?

四、比例尺:

1、有一幅地图,比例尺为1 :3000000,已知两地之间的实际距离为2500千米,在地嵊上量出应是多少厘米?

2、甲乙两地实际距离为1500千米,地图上量出距离12厘米,问这幅地图的比例尺是多少?

五、小结:

六、作业:

P97  8,9

复习(二)

教学内容: P97– 98

教学目标:

使学生进一步掌握正、反比例的意义及性质,并能解答一些实际的比例应用题。

教学过程:

一、正反比例的意义及性质:

1、(    )一定,路程与速度成(  )比例。

  (    )一定,速度与时间成(  )比例。

2、3 :甲 = 4 :乙

   说说各部分名称。

   甲 :乙 =(    ) :(    )

   甲和乙成(    )比例关系。

3、X ÷Y = Z(X、Y、Z均不为0)

当Z一定,(    )和(    )成(    )比例;

当Y一定,(    )和(    )成(    )比例;

当X一定,(    )和(    )成(    )比例;

二、应用题:

1、一台织布机8小时可以织布200米,照这样计算,3小时可织布多少米?(用两种以上方法解)

2、甲城到乙城,骑自行车速度每小时是18千米,需  1 3 小时,步行需1.2小时,步行每小时行多少千米?

3、学校图书馆共有480体故事书,六年级借走了 1 3 后,剩下的按5 :3的比例借给四、五年级学生阅读,四、五年级各可借到多少本故事书?

四、小结:

这个单元你还有什么不懂的地方吗?

五、作业:

P98 – 11~15

 

·语文课件下载
·语文视频下载
·语文试题下载

·语文备课中心




下载该资料的word文档
(内含完整公式图片)

点此察看与本文相关的其它文章』『搜索相关课件


上一篇】【下一篇  【教师投稿】 
本站管理员:尹瑞文 微信:13958889955